Hybrid Risk Assessment Model based on Bayesian Networks

Francois-Xavier Aguessy, Olivier Bettan, Gregory Blanc, Vania Conan, and Herve Debar francois-xavier.aguessy@telecom-sudparis.eu

> Thales Communications & Security, Paris, France Telecom SudParis, Institut Mines-Télécom, Évry, France

> IWSEC 2016, Tokyo, September 12th, 2016

François-Xavier Aguessy

THALE!

Outline

- 2 State of the art
- 3 Hybrid Risk Assessment Model
- 4 Conclusion

2 / 20

François-Xavier Aguessy

Hybrid Risk Assessment Model based on Bayesian Networks

Introduction

- Context:
 - Increase in the number and complexity of attacks.
 - Need means to know the attacks that can happen, are happening, and to prevent them.
- Goal: Modelling multi-step attacks for Dynamic Risk Assessment.
- Assess the level of security of an information system according to security alerts.
- Determine the attacks that are currently happening.
- Know how the attacker arrived here and what he could do next.
- Models based on attack graph.

THALES

Attack Graphs Dynamic Risk Assessment models Cycle problem

Outline

2 State of the art

- Attack Graphs
- Dynamic Risk Assessment models
- Cycle problem

4 Conclusion

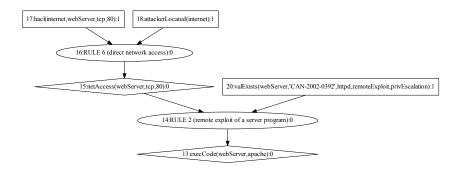
François-Xavier Aguessy

Hybrid Risk Assessment Model based on Bayesian Networks

THALES

< E

Attack Graphs Dynamic Risk Assessment models Cycle problem


Attack graphs

- First representation of network attacks.
- Several formalisms regrouped under the name Attack Graph.
- Logical attack graphs:
 - AND/OR directed graph,
 - Nodes are logical facts reachable by an attacker,
 - Leaves represent the preconditions used to achieve goals.
- Topological attack graphs:
 - Based on logical attack graphs,
 - More concise and understandable,
 - Nodes are machines or IP addresses linked by attack steps.

THALES

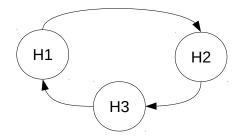
Attack Graphs Dynamic Risk Assessment models Cycle problem

Attack graphs

THALES

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Attack Graphs Dynamic Risk Assessment models Cycle problem


Attack graphs

- First representation of network attacks.
- Several formalisms regrouped under the name Attack Graph.
- Logical attack graphs:
 - AND/OR directed graph,
 - Nodes are logical facts reachable by an attacker,
 - Leaves represent the preconditions used to achieve goals.
- Topological attack graphs:
 - Based on logical attack graphs,
 - More concise and understandable,
 - Nodes are machines or IP addresses linked by attack steps.

THALES

Attack Graphs Dynamic Risk Assessment models Cycle problem

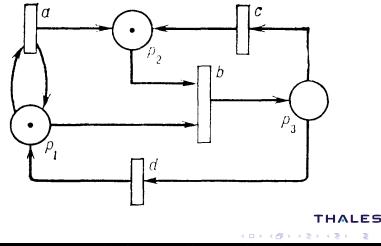
Attack graphs

5 / 20

François-Xavier Aguessy

Hybrid Risk Assessment Model based on Bayesian Networks

Attack Graphs Dynamic Risk Assessment models Cycle problem


Dynamic Risk Assessment models

• Attack graphs:

- Technology mastered,
- $\checkmark\,$ Contains accurate description of multi-steps attacks,
- × Not created to model on-going attacks (no nodes for detection/alerts, no position of attacker).
- Attack nets:
 - \checkmark Concurrency and progress of several attacks,
 - \times Attacker can not be in several places (several privileges),
 - \times Difficult to add tokens (representing alerts) during runtime.
- Bayesian attack graphs:
 - $\checkmark\,$ Powerful tools to compute and propagate probabilities,
 - \checkmark Description of attacks more expressive (no-more AND/OR),
 - \times Size of Conditional Probability Tables
 - × Management of cycles (Bayesian networks need acyclic graphs).

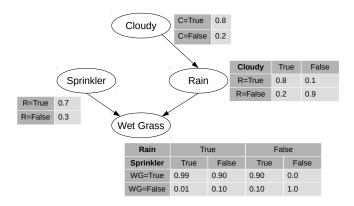
Attack Graphs Dynamic Risk Assessment models Cycle problem

Dynamic Risk Assessment models

Attack Graphs Dynamic Risk Assessment models Cycle problem

Dynamic Risk Assessment models

• Attack graphs:


- ✓ Technology mastered,
- $\checkmark\,$ Contains accurate description of multi-steps attacks,
- × Not created to model on-going attacks (no nodes for detection/alerts, no position of attacker).

• Attack nets:

- ✓ Concurrency and progress of several attacks,
- × Attacker can not be in several places (several privileges),
- $\times\,$ Difficult to add tokens (representing alerts) during runtime.
- Bayesian attack graphs:
 - \checkmark Powerful tools to compute and propagate probabilities,
 - ✓ Description of attacks more expressive (no-more AND/OR),
 - \times Size of Conditional Probability Tables
 - × Management of cycles (Bayesian networks need acyclic graphs).

Attack Graphs Dynamic Risk Assessment models Cycle problem

Dynamic Risk Assessment models

François-Xavier Aguessy

6 / 20

TELECOM SudParis

THALES

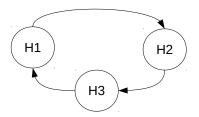
イロト イボト イヨト イヨ

Attack Graphs Dynamic Risk Assessment models Cycle problem

Dynamic Risk Assessment models

• Attack graphs:

- ✓ Technology mastered,
- $\checkmark\,$ Contains accurate description of multi-steps attacks,
- × Not created to model on-going attacks (no nodes for detection/alerts, no position of attacker).

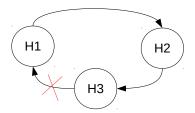

• Attack nets:

- ✓ Concurrency and progress of several attacks,
- × Attacker can not be in several places (several privileges),
- $\times\,$ Difficult to add tokens (representing alerts) during runtime.
- Bayesian attack graphs:
 - $\checkmark\,$ Powerful tools to compute and propagate probabilities,
 - $\checkmark\,$ Description of attacks more expressive (no-more AND/OR),
 - × Size of Conditional Probability Tables
 - × Management of cycles (Bayesian networks need acyclic graphs).

Attack Graphs Dynamic Risk Assessment models **Cycle problem**

Cycles in attack graphs

A topological attack graph:

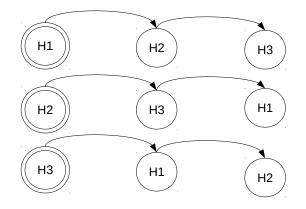


7 / 20

Attack Graphs Dynamic Risk Assessment models **Cycle problem**

Cycles in attack graphs

Current approaches followed to build Bayesian Attack graphs from a cyclic graph (when mentioned):


THALES

< 47 ▶

Attack Graphs Dynamic Risk Assessment models **Cycle problem**

Cycles in attack graphs

But there are three possible paths:

The solution we propose: enumerate the paths.

François-Xavier Aguessy

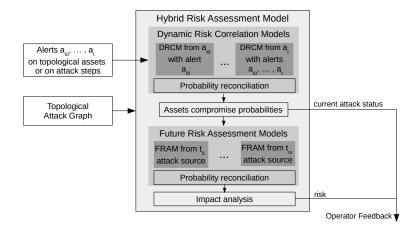
Hybrid Risk Assessment Model based on Bayesian Networks

THALES

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

Outline

2 State of the art


- 3 Hybrid Risk Assessment Model
 - Architecture
 - Dynamic Risk Correlation Model
 - Future Risk Assessment Model
 - Performance results

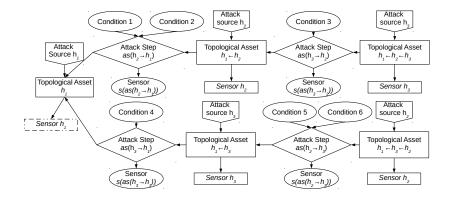
4 Conclusion

Architecture

Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

High-level model architecture

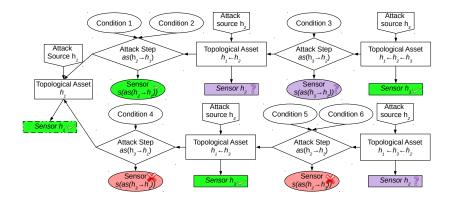
< □ > < □ > < □ > < □ > < □ > < □ >


Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

Dynamic Risk Correlation Model

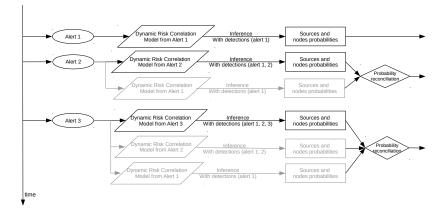
- Build from a bunch of (ordered) alerts.
- To analyze how these alerts may have been produced.
- Gives attack sources and attack paths (via the Bayesian topological nodes) probabilities.

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results


Dynamic Risk Correlation Model from alert on h_1

イロト イポト イヨト イヨト

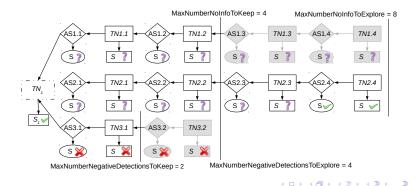
Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results


Dynamic Risk Correlation Model from alert on h_1

イロト イポト イヨト イヨト

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

Build of the model according to detections

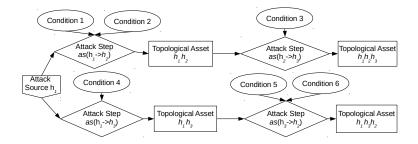


< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

Performance improvement – pruning

- Prune paths that do not bring information.
- Count the number of no-detection or no-information.
- Two parameters: maximum to keep, and maximum to explore.


Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

Future Risk Assessment model

- Build from an attack source with its probability.
- To analyze the most probable possible futures.
- Dynamicity by updating the probability of conditions, taking into account the context (already exploited vulnerabilities...).

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results

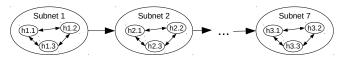
Example of Future Risk Assessment model

François-Xavier Aguessy

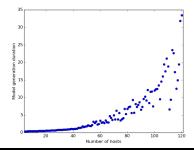
Hybrid Risk Assessment Model based on Bayesian Networks

イロト イボト イヨト イヨト

Architecture Dynamic Risk Correlation Model Future Risk Assessment Model Performance results


Performances ?

- No evidences,
- No sensors,
- Only Forward propagation.
- No need to go very far from detections / attack sources,
- Several small models in parallel.


Architecture Dynamic Risk Correlation Model Future Risk Assessment Model **Performance results**

Performances

Simulations network topology:

HRAM model generation and inference duration:

Hybrid Risk Assessment Model based on Bayesian Networks

(A) ►

Outline

2 State of the art

3 Hybrid Risk Assessment Model

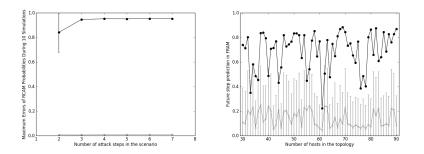
François-Xavier Aguessy

Hybrid Risk Assessment Model based on Bayesian Networks

18 / 20

Conclusion

- Bayesian inference is a powerful tool to deduce the effects of several events on a global model.
- Well adapted to Dynamic Risk Assessment problem.
- To use the inference algorithms, necessary to satisfy the constraints of the formalism (acyclic, CPT size...).
- Definition of an hybrid model combining dynamic risk correlation models (past) with possible future models (future).
- Generation of the HRAM on topologies far bigger than the state of the art.


THALE

Thanks for your attention! Any questions?

- F.-X. Aguessy, O. Bettan, G. Blanc, V. Conan, H. Debar. Hybrid Risk Assessment Model based on Bayesian Networks. In 11th International Workshop on Security, IWSEC 2016, Tokyo, Japan, September 12-14, 2016, Proceedings, 2016.
- 🔽 francois-xavier.aguessy@telecom-sudparis.eu
- Slides available online @ https://fxaguessy.fr/en/articles/hram/

THALE

Accuracy results

< □ > < 同 >

Performance improvements – Polytree

- A directed graph is a polytree if its underlying undirected graph is a tree.
- Even exact inference algorithms are much more performing (Lauritzen or Pearl).
- Can do exact inference up to 25.000 nodes (whereas problems with > 500) with a normal laptop.
- Specification of the dynamic risk correlation models as polytrees.

THALE